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Abstract

Artificial neural networks (ANNs) were successfully developed for the modeling and prediction of migration indices of the
53 benzene derivatives and heterocyclic compounds in microemulsion electrokinetic chromatography. The selected
descriptors that appear in multiple linear regression models are: 3D-MoRSE signal 25 unweighted, 3D-MoRSE signal 19

1weighted by atomic Sanderson electronegativity,R maximal autocorrelation index lag 1 weighted by atomic mass (R M ),1
1R maximal autocorrelation index lag 2 weighted by polarizability (R P ) and average atomic composition index. These2

descriptors were used as inputs for generated 5-4-1 networks. After training and optimization of the ANN parameters it was
used to prediction of migration index of the test set compounds. The results obtained using ANNs were compared with the
experimental values as well as with those obtained using regression models and showed the superiority of ANNs over
regression models.
   2003 Elsevier Science B.V. All rights reserved.

Keywords: Structure–property relationships; Migration index; Microemulsion electrokinetic chromatography; Neural
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1 . Introduction retention factor,k, of a neutral solute in MEEKC can
be calculated as follows:

Microemulsions are transparent liquids that gener- K 5 (t 2 t ) /t ? (12 t /t ) (1)s 0 0 s m
ally consist of a surfactant, a cosurfactant such as a

where t , t and t are the migration times of the0 s mmedium-chain alcohol, oil and water. These disper-
electroosmotic flow, the solute and the microemul-sion systems are thermodynamically stable[1].
sion, respectively.Watarai used oil-in-water (O/W) microemulsions of

The migration index (MI) scale that was intro-water–sodium dodecyl sulfate (SDS)–1-butanol–
duced by Muijselear et al. in micellar electrokineticheptane as a pseudo stationary phase in electrokinetic
chromatography[3] applied to MEEKC with somechromatography[2] and called it microemulsion
modifications by the Ishihama et al.[4]. Theyelectrokinetic chromatography (MEEKC). Analo-
defined the MI scale for a solute in MEEKC asgous to micellar electrokinetic chromatography, the
follows:
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where c and d are the slope and the intercept of a 2 . Methods
calibration line between logk values of reference
solutes such as alkyl benzenes and their migration 2 .1. Data set
indices, respectively. The Migration index scale can
be applied for all neutral solutes that migrate in the The data set of migration indexes in MEEKC was
range fromt to t and this might be independent of taken from the values reported by Ishihama et al.[4].0 m

the volume of the microemulsion. The values of The molecules in the data set including benzene
migration index can be used as a hydrophobic derivatives and heterocyclic compounds are shown in
parameter and were used in quantitative structure– Table 1.The migration indices of all the molecules
property relationship (QSPR) studies. included in the data set were obtained under the

Although the experimental determination of MI is same conditions. The migration indices fall in the
time consuming and requires high-purity samples range of 1 to 9.9 for pyrimidine and anthracene,
and skilled operators, so the development of alter- respectively. The data set was randomly divided in
native methods such as QSPRs would be useful for two groups; a training set and a prediction set
the theoretical calculation of MI values. In addition consisting of 43 and 10 molecules, respectively. The
these investigations can be help to better understand training set was used for the model generation and
the migration behavior of molecules in MEEKC. the prediction set was used for the evaluation of the
QSPRs have been used extensively to explain sepa- generated model.
ration mechanisms, predict retention behavior and
characterize the physicochemical properties of sol- 2 .2. Descriptors
utes in thin-layer chromatography[5], gas chroma-
tography [6] and high-performance liquid chroma- The MI value is related to molecular structure in a
tography[7,8]. Also there are some reports on QSPR complex way. It depends on the size of molecule and
studies in capillary electrophoresis[9–11]. Fu and the strength of interactions between the solute and
Lucy developed empirical expressions for the predic- solvent molecules. The molecular descriptors used to
tion of electrophoretic mobility of monoamines and search for the best model of the migration index
carboxylic acids[12,13]. They correlated the mobili- were calculated by the Dragon program[24] on the
ty of analytes with the molecular mass, molar basis of the minimum energy molecular geometries
volume and dissociation constant using non-linear optimized by the MOPAC package[25] (AM1
equations. Also, Liang et al. studied the correlation semiempirical method). Dragon is a new, freely
between the electrophoretic mobility of 13 flavonoids available software (by Milano Chemometrics and the
and their topological indices[14]. Artificial neural QSAR Research Group) for the calculation of more
networks (ANNs) have been applied to a wide than 800 molecular descriptors. Subsequently, the
variety of chemical problems such as prediction of method of stepwise multiple linear regression (MLR)
13C nuclear magnetic resonance (NMR) chemical was used to select the most important descriptors and
shift [15], selectivity coefficients of ion selective to calculate the coefficients relating the descriptors to
electrodes[16], simulation of MS spectra[17] and migration index. The descriptors that appear in the
QSPR investigations[18–22].Also Jalali-Heravi and best MLR equation are shown inTable 2. These
Garakani-Nejad used artificial neural networks for descriptors are: 3D-MoRSE signal 25 unweighted,
the prediction of electrophoretic mobilities of sul- 3D-MoRSE signal 19 weighted by atomic Sanderson
fonamides in capillary zone electrophoresis[23]. electronegativity, R maximal autocorrelation index

1They used heat of formation, most positive partial lag 1 weighted by atomic mass (R M ), R maximal1

charge and molecular surface area in their QSPR autocorrelation index lag 2 weighted by polarizabil-
1models. ity (R P ) and average atomic composition index.2

In the present study an ANN was employed to These descriptors were used as inputs for generated
generate a QSPR model between the molecular based ANNs.
structural parameters (descriptors) and observed mi- A detailed description of the theory behind of
gration indices of some benzene derivatives and these descriptors has been adequately described
heterocyclic compounds in MEEKC. elsewhere[26]. Many physical, chemical and bio-
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T able 1
aData set and corresponding observed and predicted values of the MI

No. Name MI exp MI ann MI MLR E (%)rel

Training set
1 Methylpyrazine 2.15 2.49 2.88 1.49
2 N-Methylbenzamide 3.67 4.04 4.05 3.04
3 1-Methylpyrrole 3.95 4.03 4.43 3.03
4 p-Methoxyphenol 4.02 4.53 4.58 3.53
5 Benzonitrile 4.51 4.28 4.36 3.28
6 o-Creosol 5.09 4.90 5.12 3.90
7 Benzene 5.93 6.19 5.92 5.19
8 p-Chlorophenol 6.26 6.38 5.94 5.38
9 3-Methylindole 6.69 6.45 6.32 5.45

10 Propylbenzene 9.10 9.11 8.49 8.11
11 Propiophenone 5.83 5.52 5.24 4.52
12 p-Propylphenol 7.51 7.32 7.20 6.32
13 4,6-Dimethylpyrimidine 2.65 2.27 2.74 1.27
14 Benzaldehyde 4.53 4.25 4.34 3.25
15 m-Cresol 5.09 4.91 5.00 3.91
16 Butylbenzene 9.89 9.78 9.78 8.78
17 Acetophenone 4.87 4.72 5.11 3.72
18 Benzyl alcohol 3.92 4.19 4.32 3.19
19 Butyrophenone 6.75 6.36 6.68 5.36
20 Methyl benzoate 5.82 5.71 4.99 4.71
21 Ethylpyrazine 3.17 2.74 3.17 1.74
22 1-Methylindole 6.68 6.32 6.53 5.32
23 2,6-Dimethylpyrrole 4.20 4.63 5.29 3.63
24 Pyrimidine 1.00 0.87 1.34 20.13
25 Ethyl 2-furoate 4.67 5.15 5.65 4.15
26 Anthracene 9.90 9.69 9.98 8.69
27 Thiophene 5.23 5.17 5.02 4.17
28 2-Naphthol 6.77 6.63 6.55 5.63
29 Quinoxaline 4.21 3.84 3.33 2.84
30 2-Methylindole 6.24 6.32 7.17 5.32
31 Pyrazine 1.28 1.37 1.18 0.37
32 Indole 5.69 5.71 5.88 4.71
33 Naphthalene 8.19 8.34 7.95 7.34
34 Nitrobenzene 5.15 5.63 5.09 4.63
35 Resorcinol 3.12 3.27 3.31 2.27
36 p-Nitrotoluene 6.03 2.49 2.88 4.84
37 2-Naphthol 7.26 5.84 5.49 6.38
38 Methyl 2-furoate 3.74 7.38 8.36 2.74
39 Furan 4.17 3.74 3.05 3.01
40 Toluene 7.03 4.01 3.64 5.94
41 p-Nitroanisol 5.54 6.94 6.61 4.50
42 Acetanilide 3.93 5.50 5.04 3.24
43 p-Cresol 5.17 4.24 4.54 3.92

Prediction set
1 2-Ethylfuran 6.63 6.92 7.11 5.92
2 p-Nitroaniline 4.37 3.89 3.23 2.89
3 4-Methylpyrimidine 1.90 2.18 2.25 1.18
4 Pyrrole 3.03 3.02 1.89 2.02
5 Phenol 4.29 4.89 4.90 3.89
6 2-Methylfuran 5.40 6.10 5.75 5.10
7 Anisol 5.79 5.48 5.67 4.48
8 p-Ethylphenol 6.36 6.39 6.50 5.39
9 Benzofuran 6.85 6.54 6.40 5.54

10 Ethylbenzene 8.05 8.52 7.94 7.52
a exp refers to experimental; ann refers to artificial neural network; MLR refers to multiple linear regression determined values of

migration index;E (%) represents the relative error between ann predicted and experimental determined values of migration index.rel
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T able 2
Specification of multiple linear regression models

Descriptor Notation Coefficient

3D-MoRSE signal 25 unweighted MoRSE-25 2.972 (60.288)
3D-MoRSE signal 19 weighted by atomic Sanderson electronegativity MoRSE-19 3.418 (60.301)

1R maximal autocorrelation index lag 1 weighted by atomic mass R M 218.120 (602.035)1
1R maximal autocorrelation index lag 2 weighted by polarizability R P 212.329 (63.179)2

Average atomic composition index AAC 24.192 (60.689)
Constant 6.359 (61.123)

logical properties of compounds are dependent on reporting its values only at equally spaced values of
the three-dimensional (3D) arrangement of the atoms S within a certain range. Thus the entire 32 3D-
in a molecule. Consideration of the 3D structure of MoRSE values span a 32-dimensional space where
organic compounds in qualitative structure–activity each structure corresponds to a point in this space.
relationship (QSAR) studies has been hindered by Also we can use some atomic propertiesA , likei

the lack of data on the three-dimensional structure of atomic number, atomic mass, partial atomic charge,
the compounds to be considered. The three-dimen- atomic electronegativites and atomic polarizabilities
sional structure of molecule can experimentally be in Eq. (3). The possibility for choosing an appro-
derived from electron or X-ray diffraction studies or priate atomic property give great flexibility to the
from NMR measurements of nuclear Overhouser 3D-MoRSE code for adapting it to the problem
effects (NOEs). Schuur and Gasteiger recently de- under investigation. The 3D-MoRSE codes have
veloped a mathematical transformation on the molec- great potential for representation of molecular struc-
ular 3D structure that gives a fixed number of ture. It is worth noting that they reflects the three-
variables for 3D structure representation built on dimensional arrangement of the atoms of a molecule
equations used in the analysis of the intensity and do not care about chemical bonds.
distributions obtained in electron diffraction experi- Other newly developed 3D descriptors are geome-
ments [26–28]. The new 3D structure code was try topology and atomic weight assembly (GETA-
therefore, named 3D molecular representation of WAY) descriptors that were presented by Consonni
structures based on electron diffraction code (3D- et al.[29,30]. They encode geometrical information
MoRSE code). They can be calculated by summing that given from influence matrix, topological in-
atomic properties viewed by different angular scat- formation given by molecular graph and chemical
tering functions. After some modifications and sim- information from selected atomic properties. One
plification to the main equation they reported the type of these molecular descriptors is R-GETAWAY
following equation for the calculation of these codes: and represented byR (w) that calculated as follows.k

The molecular influence matrix, denoted byH and
n i21 Sin(sr )ij resembles the leverage (or influence) matrix defined

]]]I(s)5OOA A ?i j sr in regression diagnostics[29]. The value ofH wasiji52j51

calculated from the molecular matrixM (M has A
21˚S 5 0, . . .,31.0 A (3) rows corresponding to the atoms in a molecule and

three column corresponding to the Cartesian coordi-
In this equation I(s) represent the 3D-MoRSE natesx, y, z of each atom in optimized molecular

code,A and A are any atomic properties of atomi structure) as follows:i j

and j, r is interatomic distance between atomi andij
T 21 Tj, n is the number of atoms in molecule andS is a H5M(M M) ?M (4)

reciprocal distance. The value ofS was considered
only at discrete positions within a certain range. In where the superscript T refers to the transposed
many applications 32 equidistant values were chosen matrix. The diagonal elementsh of the H matrix,ii

21˚from 0 to 31 A . So the functionI(s) is discrete, called leverage, encode atomic information and
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represent the ‘‘influence’’ of each molecule atom in included) andA is the number of equal-type atomsg

determining the hole shape of molecule; for example in thegth equivalence class[26].
mantle atoms always have higherh values thanii

atoms near the molecule center. Moreover, the 2 .3. ANN generation
magnitude of the maximum leverage in the molecule
depends on the size and shape of the molecule itself. A detailed description of the theory behind a
Lower leverage can be found for atoms in molecules neural network has been adequately described in the
of spherical shape, while higher leverage for atoms literature[31–33]. In addition we report some rel-
in more linear molecules. evant principles of ANNs in previous papers

The autocorrelation R-GETAWAY descriptors [17,18,21,22,34].The program for the feed-forward
have been defined based on this matrix as follows: neural network that was trained by a back-propaga-

tion algorithm was written in FORTRAN 90. This]]A21 h .hii jjœ network has five nodes in the input layer and one
]]R (w)5OO ?W Wd(k,d ) k 5 1,2,d (5)k i j ijr node in the output layer. Descriptors that appeared iniji51 j.i

the selected MLR model were used as inputs for the
where R (w) is the w-weighted kth order of auto- generated ANN and its output was the migrationk

correlation index,r is the 3D geometric distances index for molecule of interest. The number of nodesij

between each pair of atomsi and j, d is the in the hidden layer would be optimized. The initialij

topological distance between atomsi and j, d is the weights were randomly selected from a uniform
topological diameter,h andh are diagonal terms of distribution that ranged between20.3 and 10.3.ii jj

the H matrix andd, is a Dirac-delta function defined The initial bias values were set to be one. These
as: values were optimized during the network training.

The value of each input was divided into its mean1 if d 5 kij value to bring the values of the input variables intod(Kd )5 (6)Hij 0 if d ± kij the dynamic range of the sigmoid transfer function in
the ANN. Before training, the network was opti-To take into account local; aspect of the molecule,
mized for the number of nodes in the hidden layer,from Eq. (5) the maximal contribution to the auto-
learning rates and momentum. Then the network wascorrelation at each lag (i.e., topological distance) has
trained using the training set to optimize the valuesalso been proposed as a molecular descriptor:
of weights and biases. Finally in order to evaluate

]] the prediction power of the ANN, trained networkh .hii jjœ1 ]]R (w)5max ?W Wd(k,d )F G was employed to calculate the migration indexes fork ij i j ijrij the prediction set.
i ± j andk 51,2,. . . ,d (7)

1whereR (w) is thew-weightedkth order maximalRk 3 . Results and discussion
index. These descriptors can match 3D-molecular
geometry, atom relatedness and chemical informa- The data set and corresponding observed and
tion. ANN predicted values of the migration indexes of all

The average atomic compositional (AACs) indices molecules studied in this work are shown inTable 1.
are molecular zero dimensional descriptors that are Table 2shows the best MLR models. It can be seen
derived from the chemical formula of a molecule and from this table that five descriptors are used in MLR
represent the mean information on the elemental model. These descriptors are: 3D-MoRSE signals 25
composition of the molecule and are calculated as: unweighted, 3D-MoRSE signals 19 weighted by

atomic Sanderson electronegativity,R maximal auto-A Ag g
] ]AAC 5 2O ? log (8) correlation index lag 1 weighted by atomic massh 2 hA A 1(R M ), R maximal autocorrelation index lag 21

h 1where A is the total number of atoms (hydrogen weighted by polarizability (R P ) and average2
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T able 3atomic composition index. Each of these variables
aThe values of the descriptors that were used in this workencodes different aspects of the molecular structure.

b 1 1No. Morse-25 MoRSE-19 R M R P AACAmong the different factors affecting the migration 1 2

behavior of molecules in MEEKC, mass, size, bulki- Training set
ness and electronic parameters are most important. 1 0.067 0.387 0.14 0.103 1.46

2 0.849 0.312 0.071 0.098 1.483The appearance of 3D-MoRSE and GETAWAY
3 0.543 0.415 0.11 0.128 1.296descriptors that encode the 3D structure of a mole-
4 0.8 0.185 0.111 0.097 1.402

cule reveals the role of bulkiness and steric interac- 5 0.635 0.299 0.1 0.117 1.296
tions of a solute in MEEKC. Although the fact that 6 0.588 0.48 0.1 0.094 1.272
some of these descriptors weighted by polarizability 7 0.64 0.535 0.077 0.115 1

8 0.578 0.082 0.329 0.149 1.614and electronegativity represent the role of electronic
9 0.827 0.741 0.077 0.101 1.245interactions in migration behavior of a molecule in

10 0.723 1.255 0.072 0.101 0.985
MEEKC. The calculated values of these descriptors 11 0.521 0.737 0.072 0.099 1.234
are shown inTable 3for all the molecules included 12 0.717 0.901 0.11 0.099 1.207
in the data set. 13 20.094 0.437 0.128 0.083 1.406

14 0.585 0.368 0.089 0.105 1.296The next step was the generation of the artificial
15 0.613 0.361 0.109 0.095 1.272neural network. Before training the network, the
16 0.771 1.654 0.072 0.108 0.98

parameters of the number of nodes in the hidden 17 0.617 0.6 0.088 0.117 1.264
layer, weights and biases learning rates and momen-18 0.538 0.439 0.079 0.104 1.272
tum values were optimized. The procedure for the 19 0.626 1.06 0.072 0.098 1.209

20 0.787 0.488 0.086 0.1 1.392optimization of these parameters is reported in our
21 0.078 0.485 0.148 0.137 1.406previous papers[17,18]. Table 4shows the architec-
22 0.812 0.809 0.073 0.09 1.245

ture and specifications of the optimized ANNs. After 23 0.458 0.711 0.089 0.092 1.248
the optimization of the ANN parameters, the network 24 0.193 20.144 0.146 0.123 1.522
was trained using a training set for the adjustment of 25 0.854 0.669 0.07 0.097 1.357

26 1.835 0.426 0.065 0.08 0.98weights and biases values. To control the overfitting
27 0.337 0.398 0.351 0.341 1.392of the network during the training procedure, the
28 1.184 0.175 0.103 0.086 1.236

values of standard error of calibration (SEC) and 29 0.43 0.169 0.115 0.097 1.406
standard error of prediction (SEP)[35] were calcu- 30 0.756 0.995 0.092 0.096 1.245
lated and recorded to monitor the extent of the 31 20.004 0.019 0.145 0.119 1.522

32 0.793 0.503 0.103 0.099 1.272learning after each 500 iterations. Obtained results
33 1.209 0.459 0.073 0.087 0.991showed that after 38 500 iterations, the SEP values
34 0.505 0.504 0.221 0.102 1.727

started to increase and overfitting began. To maintain 35 0.647 20.042 0.117 0.096 1.449
the predictive power of the network at a desirable 36 0.47 0.654 0.203 0.093 1.658
level training was stopped at this point. Based upon 37 0.611 0.39 0.345 0.158 1.325

38 0.371 0.182 0.139 0.102 1.522the high values of iterations two points may arise.
39 0.322 0.172 0.168 0.125 1.392First, the architecture of the generated ANN was
40 0.709 0.6 0.085 0.107 0.997

correctly designed and second the descriptors ap- 41 0.637 0.417 0.198 0.09 1.722
peared in the MLR models have been adequately 42 0.716 0.533 0.09 0.103 1.483
chosen. 43 0.552 0.407 0.116 0.099 1.272

For the evaluation of the predictive power of the
network, a trained ANN was used to predict the
migration indexes of the molecules included in the dard error values of these models shows the su-
prediction set.Table 1 represents the experimental periority of the ANN over the MLR model. The
and ANN predicted values of migration indexes for standard errors of calibration and prediction for the
the training and prediction set compounds.Table 5 MLR model are 0.510 and 0.602 should be compared
compares the statistical parameters for ANN and with the values of 0.260 and 0.421, respectively, for
MLR models. The correlation coefficients and stan- the ANN model. In the case of the ANN, the
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Table 3. Continued T able 6
Comparison of the SEC and SEP of the selected model with theb 1 1No. Morse-25 MoRSE-19 R M R P AAC1 2 test models obtained using different molecules

Prediction set
Model SEC (%) SEP (%) R Rt p1 0.424 0.895 0.197 0.129 1.273

2 0.348 0.203 0.206 0.086 1.811 Selected model 0.260 0.421 0.991 0.977
3 20.09 0.266 0.149 0.095 1.46 Test model I 0.251 0.415 0.993 0.981
4 0.284 0.014 0.104 0.135 1.361 Test model II 0.273 0.443 0.990 0.972
5 0.617 0.314 0.129 0.108 1.314 Test model III 0.267 0.453 0.991 0.967
6 0.424 0.527 0.19 0.123 1.325 Test model IV 0.255 0.418 0.992 0.983
7 0.802 0.444 0.102 0.103 1.272
8 0.759 0.647 0.111 0.098 1.236
9 0.783 0.443 0.148 0.105 1.273 for these test models. As can be seen from this table,

10 0.786 0.978 0.077 0.102 0.991 the results do not depend on the molecules of the
a The definitions of the descriptors are given inTable 2. training and predictions set and therefore, are not due
b The numbers refers to the numbers of the molecules given in to chance. Fig. 1 shows the plot of the ANN

Table 1. predicted versus the experimental values for the
migration indexes of the training and prediction set.

T able 4
The residuals of the ANN calculated values of theArchitecture and specification of the generated ANNs
migration indexes are plotted against the experimen-

No. of nodes in the input layer 5
tal values inFig. 2. The propagation of the residualsNo. of nodes in the hidden layer 4
in both sides of zero line indicates that no systematicNo. of nodes in the output layer 1

Weights learning rate 0.7 error exists in the development of the ANN.
Biases learning rate 0.02 Abraham et al. have applied a linear free energy
Momentum 0.45 relationship (LFER) to the same data set[36]. In this
Transfer function Sigmoid

model they correlate experimentally determined sol-
ute solvatochromic parameters to retention factors in

maximum and minimum relative errors for the MEEKC. Comparison between results obtained by
predicted migration indices are 7.25 and 1.18% for Abraham et al. and the present work reveals that the
ethyl benzene and pyrrole, respectively. However, it statistical parameters of these models did not have
is worth noting that these values are in agreement any significant differences. It is worth nothing that
with the results obtained by experiments.

 In order to enforce the credibility of the obtained
results different training and prediction sets were
chosen and the network was trained using these
training sets. In this procedure a set of 11 com-
pounds out of 53 molecules was chosen randomly as
a prediction set each time. Then an ANN model was
generated and trained with the remaining molecules
and the MIs of removed molecules were predicted
using this model. This procedure was repeated four
times. The results obtained are included inTable 6

T able 5
aStatistical parameters obtained using the ANN and MLR models

Model SEC (%) SEP (%) R R F Ft p t p

ANN 0.260 0.421 0.991 0.977 2351 170
MLR 0.510 0.602 0.968 0.953 609 79

a t refers to the training set; p refers to the prediction set;R is Fig. 1. Plot of the calculated migration indices against the
the correlation coefficient;F is the statisticalF value. experimental values.
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 most case more than one type of these descriptors are
needed to reach an acceptable modeling power.
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